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Outline 

• Brief description of info-gap robustness 

• Application to the NASA Challenge Problem 

• Application to wind turbine blade vibrations 
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Scientists and engineers are confronted to 
three broad categories of uncertainty. 

• Variability and randomness 

• Numerical uncertainty 

• Model-form uncertainty 
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In the presence of uncertainty, decisions are 
generally made by resorting to some form or 
other of Uncertainty Quantification (UQ). 
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• UQ is the process of 
quantifying uncertainties 
associated with model 
predictions, with the goals of 
accounting for all important 
sources and quantifying their 
contributions to the overall 
uncertainty. 

• The most common approach 
is to estimate the probability 
of failure of the system. 
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An alternate approach to support decision-
making is to establish that the system offers 
enough margin, relative to the uncertainty 
with which the performance is assessed. 
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(QMU = Quantification of Margin and Uncertainty.) 
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Info-gap robustness poses a slightly different 
question in support of decision-making. 

• Stochastic methods (i.e. probabilistic risk assessment, 
Monte Carlo sampling) answer the question, “what is the 
probability of failure when uncertainty is propagated from 
variables of the model to predictions?” 

• Info-gap robustness instead answers the question, “by 
how much can variables of the model deviate from their 
nominal settings while guaranteeing that the performance 
requirement is still met?” 

• A robust prediction (or decision) is one that meets the 
performance requirement even as settings used to perform 
the simulation deviate significantly from the nominal case. 
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An analysis of robustness makes a distinction 
between design parameters, p, and calibration 
variables, θ, of the numerical simulation. 

• Design parameters, p, are variables that the analyst has 
control over (i.e., geometry, mass, material type, …). 

• Calibration variables, θ, are introduced by specific 
modeling choices (i.e., material coefficients, loads, …). 

• Uncertainty of p ≠ Uncertainty of θ. 

• An analysis of info-gap robustness explores the design 
parameters to search for the best-possible design, while 
attempting to make the performance as robust as possible 
to the calibration variable uncertainty. 
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   0 0U α;θ θ : θ θ α  
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An analysis of info-gap robustness starts by 
evaluating the performance by executing the 
model at its nominal “baseline” settings, θ0. 
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The analysis then searches for the best-case 
and worst-case performances as settings of 
the model are allowed to deviate from the 
nominal settings, θ0, up to an amount “α”. 
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Increased levels of deviation from the nominal 
settings, θ0, are investigated by progressively 
increasing the uncertainty parameter α, which 
has the effect of exploring larger spaces. 

Requirement, 
y ≤ yCritical 
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A steep robustness slope, “Δα/Δy”, indicates 
that the performance requirement is met even 
if the model is executed with settings that 
deviate significantly from the “baseline” θ0. 

Steep Slope  High Robustness 
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A moderate slope, on the other hand, points 
to a lack-of-robustness whereby settings of 
the model cannot deviate significantly from 
the “baseline” θ0 before failure is reached. 

Moderate Slope  Low Robustness 
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The uncertainty model, U(α;θ0), represents 
nested sets of (unknown) values or functions 
that are not necessarily limited to intervals. 
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Summary: An analysis of info-gap robustness 
assesses the extent to which the performance 
requirement is met, even if some settings of 
the model are unknown or incorrect. 

• Need a performance requirement, y ≤ yCritical. 

• Need a prediction model, y = M(p; θ). 

• Need nominal “baseline” settings of the model, θ0. 

• Need a description of uncertainty or assumptions, U(θ0;α). 

• The uncertainty is not necessarily probabilistic. 

• Requires a potentially significant computational resource. 
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Outline 

• Brief description of info-gap robustness 

• Application to the NASA Challenge Problem 

• Application to wind turbine blade vibrations 
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• Multidisciplinary problem that features 
nonlinear aero-dynamics, atmospheric 
and turbulence models, avionics, 
engine and sensor dynamics, telemetry, 
time delays, and wash-out filters. 

• Problem formulated to pursue model 
calibration, sensitivity analysis, 
uncertainty propagation, extreme-case 
analysis, and robust design. 

References: Jordan, T.L., Bailey, R.M., “NASA Langley’s AirSTAR Testbed: A subscale 
Flight Test Capability for Flight Dynamics and Control System Experiments,” AIAA 
Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, 2008. Crespo, L.G., 
Kenny, S.P., Giesy, D.P., “The NASA Langley Multidisciplinary Uncertainty Quantification 
Challenge,” AIAA Non-deterministic Approaches Conference, National Harbor, MD, 2014. 

The NASA Multidisciplinary Uncertainty 
Quantification Challenge Problem describes 
the flight dynamics of a remotely operated 
aircraft developed at NASA Langley. 
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The NASA Challenge Problem defines a high-
dimensional “black-box” code developed in 
MATLAB®, and that depends on 35 variables. 
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Nonlinearity in the problem makes it difficult 
to use Monte Carlo-like random sampling to 
characterize the prediction uncertainty. 

(Credit: K. Van Buren, LANL, LA-UR-14-20575.) 
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The robustness function shows than no more 
than 22% calibration variable uncertainty can 
be tolerated before risking system failure. 

(Credit: K. Van Buren, LANL, LA-UR-14-20575.) 
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Design optimization is performed by exploring 
parameters p1 … p14 to maximize robustness 
to the uncertainty of calibration variables, θ. 

(Credit: K. Van Buren, LANL, LA-UR-14-20575.) 
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Outline 

• Brief description of info-gap robustness 

• Application to the NASA Challenge Problem 

• Application to wind turbine blade vibrations 
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This application selects a computational 
model to simulate the bending deformation of 
the all-composite CX-100 wind turbine blade. 
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Two competing models are developed to 
simulate the vibration in a configuration of the 
blade that has not been calibrated. 
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(Solid-65) 

(Mass-21, Combin-14) 

Each modeling strategy introduces different 
sets of (arbitrary) assumptions and variables 
whose “correct” values are unknown. 

• Solid-mass Parameterization: 

Unknown Description 

(1; 2) (Translation; rotation) springs at 1.60-m section 

3 Point mass at 1.60-m section 

(4; 5) (Translation; rotation) springs at 6.75-m section 

6 Point mass at 6.75-m section 

• Point-mass Parameterization: 

Unknown Description 

(1; 2) (Elastic modulus; density) of 1.60-m section 

(3; 4) Center-of-gravity (X; Y) coordinates of 1.60-m offset mass 

5 Density of 1.60-m offset mass 

(6; 7) (Elastic modulus; density) of 6.75-m section 
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α* = 50% 

1.00-Hertz 

Maximum Error 
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Maximum Error 

Solid-mass Model 

Point-mass Model 

The solid-mass model yields more accuracy, 
even when some of its parameters deviate 
from their “nominal” settings up to ±50%. 

(Credit: K. Van Buren, LANL, LA-UR-12-7103.) 
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Conclusion: Info-gap robustness offers a 
versatile and rigorous framework to support 
decision-making under severe uncertainty. 

• Has been developed for 20+ years. 

• Comes with a thorough theoretical 
framework. 

• Handles various types of uncertainty 
in simulations or physical testing. 

• Applied to problems in engineering, 
biology, climate modeling, economy, 
social behavior, etc. 

• More info at http://info-gap.com/. 


